UASB ETP

Anaerobic Wastewater Treatment is a wastewater treatment system using biology that without using of air or oxygen. It aimed to remove organic pollution in wastewater, slurries and sludge. Anaerobic microorganisms convert organic pollutants into a “biogas” which contains methane and carbon dioxide.

Up flow anaerobic sludge blanket technology also known as UASB reactor is a form of anaerobic digester which used in wastewater treatment. UASB reactor is a methane-producing digester, which uses an anaerobicprocess and forming a blanket of granular sludge and is processed by the anaerobic microorganisms.

UASB reactor is based on the so-called three-phase separator, which enables the reactor to separate gas, water and sludge mixtures under high turbulence conditions..

The reactor has multiple gas hoods for the separation of biogas. As a result the extremely large gas/water interfaces greatly reduce turbulence, making relatively high loading rates of 10 – 15 kg/m3.d possible. Separation in the UASB reactor requires only 1.0 meter of height, which prevents flotation effects and, consequently, floating layers.

Generally, during the treatment of UASB reactor, the substrate passes through an expanded sludge bed which containing a high concentration of biomass first. After that, the remaining part of substrate passes through a less dense biomass which named the sludge blanket.

The influent is pumped to the UASB reactor from bottom of it by Peristaltic pump. The influent move upwards and get contact with the biomass in sludge bed, then continue to move upwards and the rest substrates act with the biomass again in the sludge blanket which has a less concentration of biomass compared with the sludge bed below.

The volume of sludge blanket must be sufficient to conduct the further treatment to wastewater by-passed from the lower layer of sludge bed by channeling. At the same time, it will help to ensure a stable effluent quality. A 3 phases (Gas-Liquid-Solid or GLS) separator located above the sludge blanket to separate the solid particles from the mixture (gas, liquid, and solid) after treatment and hence allowing liquid and gas to leave the UASB reactor.

After the treated wastewater will be collected by the effluent collection system via number of launders distributed over entire area discharging, to main launder provided at periphery of the reactor. And the biogasesgenerated will be collected as the valuable fuel or for deposal.

Advantages
  1. During the treatment process a amount of valuable biogas energy will be produced which can be collected for other usage;
  2. Much less bio-solids waste generated compared with aerobic process because much of the energy in the wastewater is converted to a gaseous form and resulting in very little energy left for new cell growth;
  3. A low energy requirement for the treatment process;
  4. Less nutrients required;
  5. System can be shut down for extended periods without serious deterioration;
  6. Can handle organic shock loads effectively.